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Abstract

Purpose – The purpose of this paper is to derive a dynamic equation for modelling the behaviour of
smectic-C liquid crystals under the effect of an electric field.
Design/methodology/approach – The model equation is solved using a finite difference
approximation, method of lines and pseudo-spectral methods. The solutions are compared for
accuracy and efficiency. Comparison is made of the efficiency of finite differences, method of lines and
pseudo-spectral methods.
Findings – The Fourier pseudo-spectral method is shown to be the most efficient approach.
Originality/value – This work is original; a computational comparison of numerical schemes
applied to liquid crystals has not been found in the literature.
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1. Introduction
Liquid crystals are considered to be condensed matter that exhibit both properties of
crystalline solids and simple liquids (de Gennes, 1974). The molecules arrange
themselves in a crystal-like manner, but flow like a liquid. As a consequence of this
property, liquid crystals generally possess orientational order, while losing some or all
of their positional order. Orientational order is defined to be a measure of the tendency
of the molecules to align along a unit vector, known as the director, whereas positional
order is the extent to which the position of an average molecule or group of molecules
shows translational symmetry. The amount of order in a liquid crystal is quite small
relative to that of a crystal, but can be manipulated with mechanical, magnetic or
electric forces. Liquid crystals are anisotropic fluids that consist of rod or disc-like
organic molecules which tend to align themselves along a common axis in space
known as the director, n (Stewart, 2004). There are many different types of liquid
crystal states, depending upon the amount of order in the material. The two main
liquid crystal states are nematic and smectic liquid crystals. Smectic liquid crystals
also consist of different types, namely, smectic-A, B, C, D, E, F, G, H and I (Gray and
Goodby, 1985). The difference between these liquid crystals, is again the amount of
order that they each possess.

For over 20 years now, research into liquid crystals has contributed greatly to
optical displays and screens. Since they exhibit unique optical properties, i.e. they
scatter light strongly, they are known to be of use in various applications in diverse

The current issue and full text archive of this journal is available at
www.emeraldinsight.com/0961-5539.htm

E. Momoniat acknowledges support from the University Research Committee at the
University of the Witwatersrand, Johannesburg, through the Friedel Sellschop award.



HFF
20,4

430

fields, such as engineering, physics, chemistry, biology, medical research and
pharmacy.

In this paper, we consider a nonlinear diffusion equation that models the effect of an
applied electric filed across a sample of smectic-C (SmC) liquid crystals. This nonlinear
partial differential equation is solved numerically using a finite difference
approximation, method of lines and pseudo-spectral methods which include sinc and
Fourier methods. We compare the accuracy and efficiency of the four algorithms. Our
goal is to find an algorithm; that starts with an initial configuration u ¼ u0ðxÞ, that
tends to the steady state in the most efficient way. Efficiency is measured in terms of
the time taken for each method to reach the steady state at some fixed final time.

We first consider a finite difference approximation to the nonlinear partial
differential equation (Smith, 1985). We consider a central difference approximation to
the spatial derivatives and a first-order forward difference approximation to the time
derivative. We find that the finite difference approximation has poor convergence at the
boundaries due to high-frequency oscillations. These high-frequency oscillations at the
boundaries may occur because of a mismatch of the initial and boundary conditions at
the boundaries. This is not the case in this paper. To overcome these high-frequency
oscillations, the forward approximation in time should be replaced with an implicit
high order approximation. The interested reader is referred to the papers by Khaliq
et al. (2007, 2009) and Yousuf (2008) in which high-order schemes are discussed.

We overcome the high-frequency oscillations at the boundary by using the method of
lines and pseudo-spectral methods (Fornberg, 1996; Trefethen, 2000; Boyd, 2001). In the
case of pseudo-spectral methods, we use sinc (Stenger, 1981; Lund and Bowers, 1992;
Bellomo et al., 2001) and Fourier methods (Nielsen and Janssen, 2001; Holmas et al., 2008).
We specifically use the sinc and Fourier methods because the model equation contains
trigonometric functions. The forward difference approximation in time means that the
finite difference approach leads to a numerical approximation in terms of matrix
multiplication. The method of lines and pseudo-spectral approximations produces a
nonlinear system of ordinary differential equations which we solve using the stiff
nonlinear ordinary differential equation solver ode15s in MATLAB. Sinc and Fourier
methods approximate the spatial derivative in the model equation by dense
differentiation matrices. The package DMSuite (A MATLAB Differentiation Matrix Suite
(Weideman and Reddy, 2000)) is used to generate these matrices. We show that the
Fourier pseudo-spectral method is the most efficient solution method.

This paper is divided up as follows. In section 2, the nonlinear model is derived and
non-dimensionalized. In section 3, the numerical solutions of the model equation are
obtained using a finite difference method, method of lines, sinc method and Fourier
method. The results of these methods are then compared. Concluding remarks are
made in section 4.

2. Smectic-C liquid crystals
Smectic liquid crystals possess translational order, which is a condition in which the
molecules have some arrangement in space. Molecules in this phase are arranged in
well-defined, equally spaced layers, they move only within these layers while the layers
themselves slide over one another like soap. Within the layers, the molecules tend to
align in the same direction described by the director n. This director n makes an angle
� with the layer normal a. � is referred to as the smectic tilt angle and is usually
temperature dependent. However, it may vary due to competition between boundary
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conditions, elastic effects or smectic layer compressional effects (Stewart, 2007). It was
shown by Stewart et al. (1994) that � increases as temperature decreases.

SmC liquid crystals consist of elongated rod-like molecules which can be easily
polarized due to their dipole substituents. This phase is formed when the directors of the
liquid crystals tilts away from the layer normal at an angle �. From X-ray diffraction, it
is shown that molecules are randomly arranged within structured layers. It is assumed
that the tilt directions of the molecules align in the same direction as shown in Figure 1.

Since the molecules in this phase rotate rapidly about their long molecular axes and
because of possible polarization field effects, SmC liquid crystals are said to be biaxial
(i.e. 2D unstructured layers with a tilted molecular arrangement). Within the layers,
molecules are said to rotate about the z-axis in a cone-shaped as illustrated in Figure 2.

A unit vector n is defined, as mentioned above, to represent the projection of the
molecules. Although at a given temperature the tilt angle, �, is constant, the direction is
not specified and is chosen at will. This direction may be described by a orthogonal
unit projection c onto the plane of the layers, and is known as the c-director of the
structure. It is perpendicular to layer normal a and parallel to the the director n
(Stewart and Momoniat, 2004), as indicated in Figure 2. � is known as the orientation
angle of c from the x-axis. This angle describes the orientation of the director, n. i.e. the
position of the liquid crystal rotating around the z-axis, projected onto the x-y plane.

Figure 1.
SmC liquid crystals,

arranged in well defined
layers and molecules
are tilted at an angle
� to the director, a

Figure 2.
The director n makes an

angle � with the layer
normal a
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When the molecules in this phase are chiral, (i.e. they differ from their mirror image)
they lie next to each other in a skewed orientation. Chiral refers to the unique ability to
selectively reflect one component of circularly polarized light (Stewart and Momoniat,
2004; PLC, n.d.). This state is referred to as the smectic-C* (SmC*) phase. Experiments
have shown that SmC* liquid crystals are ferroelectric, which means they are
substances which obtain spontaneous electric polarization, P (PLC, n.d.). The
polarization exists parallel to the smectic layers and perpendicular to the molecules,
and the magnitude is determined by molecular considerations although its existence
depends only on symmetry (Stewart et al., 1994). Just as in the SmC phase, the director
in the SmC* phase makes an angle � with respect to the layer normal. The difference
being, � rotates from layer to layer producing a helical structure (Figure 3). That is, the
director in this phase is neither parallel nor perpendicular to the layers, but rotates
from one layer to the next and always lies on the surface of the fictitious cone.

Now consider an external electric field E as shown in Figure 4, being applied across
a sample of SmC. This is given by the equation:

E ¼ E0 1þ �
2

cosð!�tÞ
� �

ðcos�; 0; sin�Þ; ð1Þ

where 0 < � � 1, and E0 is the magnitude of the electric field. E is not constant, it
varies according to time and has an oscillating amplitude of �2. However, in this article �
will be set equal to zero.

Figure 3.
SmC* liquid crystals
with spontaneous
polarization P

Figure 4.
The field is tilted at a
constant angle � � 0
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From Figure 3 the following are given:

n ¼ a cos �þ c sin �; ð2Þ
a ¼ ð0; 0; 1Þ; ð3Þ
c ¼ ðcos�ðz; tÞ; sin�ðz; tÞ; 0Þ; ð4Þ
b ¼ ð�sin�ðz; tÞ; cos�ðz; tÞ; 0Þ; ð5Þ

where b ¼ a � c and the orientation angle � is dependent upon x and t only. The
spontaneous polarization, which is a characteristic of SmC liquid crystals, is in the
same direction of the vector b and is denoted by:

P ¼ P0b; ð6Þ

where P0 > 0 is the magnitude of the polarization.
The total electric energy density that occurs when the electric field is applied across

a liquid crystal is given by de Gennes (1974) and Stewart and Momoniat (2004):

!elec ¼ �P � E� 1

2
�0�aðn � EÞ2; ð7Þ

where �0 is the permittivity of free space given as �0 ¼ 8.854 � 10�12 F.m�1 and �a is
the dielectric anisotropy.

The bulk energy density is given by:

!bulk ¼
1

2
B3

@�

@x

� �2

; ð8Þ

where B3 is the positive elastic constant related to the rotation of the c director
observed from layer to layer.

Using the above equations, along with the four constraints of SmC continuum
theory (Leslie et al., 1991):

a � a ¼ 1; c � c ¼ 1; a � c ¼ 0; r� a ¼ 0;

the dynamic equation is given as (Stewart and Momoniat, 2004):

2�5
@�

@t
¼ B3

@2�

@z2
� P0E0 cos� cos�� �0�aE2

0 cos� sin2 � cos2 � sin�

� �0�aE2
0 cos � sin� sin � cos� sin�:

ð9Þ

For simplicity, we non-dimensionalize the above dynamic equation so the results can be
compared to those results already obtained by other authors.

In Stewart and Momoniat (2004), it was shown that when the following scaled
variables were introduced:

T ¼ 1

4
tð2�5Þ�1�0j�ajE2

0 cos2 � sin �; ð10Þ
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X ¼ 1

2
xB�

1
2ð�0j�ajE2

0 cos2 � sin �Þ
1
2; ð11Þ

where it is assumed that �a < 0, the dynamic equation can be non-dimensionalized to:

�T ¼ �XX þ 2a cos�þ 4b sin�þ 2�ð2�Þ: ð12Þ

The subscripts denote partial differentiation with respect to the indicated variables and
a and b are introduced as dimensionless parameters given by:

a ¼ 2P0ð�0�aE0 cos� sin2 �Þ�1; ð13Þ
b ¼ tan� cot �: ð14Þ

A further transformation:

uðX ;TÞ ¼ 2�ðX ;TÞ � �; ð15Þ

results in the non-dimensional equation in a standard form (Stewart, 1998):

uT ¼ uXX � 4a sin
u

2

� �
� 4 sin uþ 8b cos

u

2

� �
: ð16Þ

Stewart and Momoniat (2004) obtain an implicit approximate solution to Equation (16).
Of physical importance is the steady state solution of Equation (16) given by

u(x, t) ¼ F(x). The steady state solution can be found by solving:

d2F

dx2
¼ 4a sin

u

2

� �
4 sin u� 8b cos

u

2

� �
: ð17Þ

Stewart and Momoniat (2004) have shown that appropriate boundary conditions for
solving Equation (16) are given by the clamped boundary conditions:

uð�1; tÞ ¼ uð1; tÞ ¼ 0: ð18Þ

We use bvp4c in MATLAB to obtain a numerical solution to the nonlinear second-order
ordinary differential Equation (17). The steady state solution is important in terms of
assessing the validity of the numerical results we obtain later. We impose the clamped
boundary conditions as:

Fð�5Þ ¼ 0: ð19Þ

We plot the variation in the steady profile in Figure 5. Changing the constant a has no
influence on the steady profile. Changing the constant b increases or decreases the
height of the steady profile.

The steady solution is physically important in the theory of liquid crystals. We
motivate this importance by considering the effect of a magnetic field on iron filings.
When a magnetic field is applied the iron fillings move and align in the same direction
without any further movement until the magnetic field is removed. SmC liquid crystals
have polarizable constituents and are easily polarized when an electric current is
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applied. This polarized state of the liquid crystal is represented by the steady solution
to the model Equation (16).

3. Numerical solutions
In this section, the non-dimensional Equation (16) is solved numerically using a finite
difference approximation, methods of lines, sinc method and Fourier method.
As indicated earlier, the finite difference approach leads to a numerical approximation
in terms of matrix multiplication. The method of lines and pseudo-spectral
approximations lead to a nonlinear system of ordinary differential equations. This
nonlinear system is solved using ode15s in MATLAB.

For the sinc and Fourier methods, the spatial derivative in Equation (16) is
approximated by a dense differentiation matrix, unlike the finite difference approach in
which the spatial derivative is approximated by a tridiagonal matrix. The nonlinear
functions are approximated by either a sinc or Fourier approximation depending on
which method is being used. We use the package DMSuite (A MATLAB Differentiation
Matrix Suite (Weideman and Reddy, 2000)) to obtain the differentiation matrices for the
sinc and Fourier methods.

The model Equation (16) is solved subject to the boundary conditions (18). We
assume an initial Gaussian configuration given by:

uðx; 0Þ ¼ e�x2

: ð20Þ

3.1 A finite difference approximation
A finite difference approximation is one of the simplest methods used in numerical
analysis to approximate a solution to a differential equation (see e.g. Smith, 1985). We
approximate the time derivative by the forward difference:

uT �
ui; jþ1 � ui; j

�T
ð21Þ

Figure 5.
Plot showing the

variation in the steady
profile obtained from a

numerical solution of (17)
solved subject to (19)

using bvp4c in MATLAB
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and the spatial derivative by the central difference approximation:

uXX �
uiþ1; j � 2ui;j þ ui�1; j

ð�XÞ2
ð22Þ

We divide the spatial domain [�a, a] into n equidistant subintervals. We have
ui; j ¼ uðXi;TjÞ, Xi ¼ �aþ i�x, i ¼ 10, 1, 2, . . . , n and �x ¼ 2a=n. The boundary
conditions (18) are approximated by uð�a; tÞ ¼ uða; tÞ ¼ 0. In this paper, we choose
a ¼ 4.

Substituting the difference approximations (21) and (22) into (16) we obtain:

ui;jþ1 � ui; j

�T
¼ uiþ1; j � 2ui; j þ ui�1; j

ð�XÞ2

 !
� 4a sin

ui; j

2

� �
� 4 sin ui; j þ 8b cos

ui; j

2

� �
:

Therefore,

ui; jþ1 ¼ ui; j þ
�T

ð�XÞ2
ðuiþ1; j � 2ui; j þ ui�1; jÞ � 4a�T sin

ui; j

2

� �
� 4�T sin ui; j

þ 8b�T cos
ui; j

2

� �
� 4a�T sin

ui; j

2

� �
� 4�T sin ui; j � 8b�T cos

ui; j

2

� �
:

ð23Þ

Now let:

� ¼ �T

2�5ð�XÞ2
; A ¼ 4a�T; B ¼ 4�T; C ¼ 8b�T:

The boundary conditions uð�a; tÞ ¼ uða; tÞ ¼ 0 are given by:

u0; j ¼ 0; un; j ¼ 0:

From this the following system is obtained:

u0; jþ1

u1; jþ1

u2; jþ1

..

.

..

.

un�1; jþ1

un; jþ1

2
66666666666664

3
77777777777775
¼

0 0 0 . . . . . . . . . 0

� ð1� 2�Þ � 0 . . . ..
.

0

0 � ð1� 2�Þ � . . . ..
.

0

..

. ..
. ..

.
. . . ..

. ..
. ..

.

..

. ..
. ..

.
. . . ..

. ..
. ..

.

0 0 ..
.

. . . � ð1� 2�Þ �

0 0 . . . . . . . . . 0 0

2
6666666666666664

3
7777777777777775
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�

u0; j

u1; j

u2; j

..

.

..

.

un�1; j

un; j

2
66666666664

3
77777777775
�A

sin
u0; j

2

� �
sin

u1; j

2

� �
sin

u2; j

2

� �
..
.

..

.

sin
un�1; j

2

� �
sin

un; j

2

� �

2
666666666666666664

3
777777777777777775

� B

sin u0; j

sin u1; j

sin u2; j

..

.

..

.

sin un�1; j

sin un; j

2
66666666664

3
77777777775
þ C

cos
u0; j

2

� �
cos

u1; j

2

� �
cos

u2; j

2

� �
..
.

..

.

cos
un�1; j

2

� �
cos

un; j

2

� �

2
666666666666666664

3
777777777777777775

� P:

The vector P given by:

P ¼

C cos
u0; j

2

� �
0
0
..
.

..

.

0

C cos
un; j

2

� �

2
6666666666664

3
7777777777775
;

is included to accommodate for the boundary conditions. This is the only necessary
term since sin 0 ¼ 0. We perform the matrix multiplications in MATLAB.

From Figure 6, it can be seen that a finite difference approximation results in high
oscillations at the boundaries. This technique is unable to produce a smooth solution for

Figure 6.
Numerical solution of the

dynamic model (16)
obtained using the finite

difference approach for
n ¼ 250 and �T ¼ 0.01
showing high-frequency

oscillations at the
boundary
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our model and therefore we look at method of lines and pseudo-spectral methods for
results.

3.2 Method of lines
In the method of lines, the spatial derivative in Equation (16) is approximated by the
central difference approximation.

uXX ¼
uiþ1ðTÞ � 2uiðTÞ þ ui�1ðTÞ

h2
: ð24Þ

The time derivative is evaluated as a time derivative at X ¼ Xi. The model Equation
(16) becomes:

u0iðTÞ ¼
1

h2
uiþ1ðTÞ � 2uiðTÞ þ ui�1ðTÞð Þ � 4a sin

uiðTÞ
2

� �

� 4 sin uiðTÞ þ 8b cos
uiðTÞ

2

� �
:

ð25Þ

The boundary conditions uð�a; tÞ ¼ uða; tÞ ¼ 0 are approximated by:

u0ðTÞ ¼ 0; unðTÞ ¼ 0: ð26Þ

We obtain the system:

u00ðTÞ
u01ðTÞ
u02ðTÞ

..

.

..

.

u0n�1ðTÞ
u0nðTÞ

2
66666666666664

3
77777777777775
¼ 1

h2

0 0 0 . . . . . . . . . 0

1 �2 1 . . . . . . . . . 0

0 1 �2 1 . . . . . . 0

..

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. ..

.

0 . . . . . . . . . . . . 1 �2

0 . . . . . . . . . . . . 0 0

2
6666666666664

3
7777777777775

u0ðTÞ
u1ðTÞ
u2ðTÞ

..

.

..

.

un�1ðTÞ
unðTÞ

2
6666666666664

3
7777777777775
� 4a

sin
u0ðTÞ

2

sin
u1ðTÞ

2

sin
u2ðTÞ

2

..

.

..

.

sin
un�1ðTÞ

2

sin
unðTÞ

2

2
6666666666666666666664

3
7777777777777777777775

�4

sin u0ðTÞ
sin u1ðTÞ
sin u2ðTÞ

..

.

..

.

sin un�1ðTÞ
sin unðTÞ

2
666666666664

3
777777777775
þ 8b

cos
u0ðTÞ

2

cos
u1ðTÞ

2

cos
u2ðTÞ

2
..
.

..

.

cos
un�1ðTÞ

2

cos
unðTÞ

2

2
666666666666666666664

3
777777777777777777775

�

8b cos
u0ðTÞ

2
0
0
..
.

..

.

0

8b cos
unðTÞ

2

2
6666666666664

3
7777777777775
:
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The nonlinear system of ordinary differential equations is solved using ode15s in
MATLAB. In Figure 7, we plot the solutions obtained from solving Equation (27). We
note in Figure 7 that the curve for the steady state is not smooth. The solution is
negative at the boundaries. While the method of lines has significantly reduced the
oscillations at the boundaries. We still have not achieved a smooth result.

3.3 Sinc method
To implement the sinc method, we use the boundary conditions (26). The spatial
derivative in Equation (16) is approximated by a sinc differential matrix given in
Weideman and Reddy (2000). We obtain the system:

u01T

u02ðTÞ

..

.

..

.

..

.

u0n�1ðTÞ
u0nðTÞ

2
66666666666664

3
77777777777775
¼ �

0 0 0 . . . . . . . . . 0

2 � �
2

3
2 . . . . . . . . .

� 1

2
2 � �

2

3
. . . . . . . . . � 1

2

..

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. ..

.

2ð�1Þðn�1Þ

ðn� 2Þ2
. . . . . . . . . � �

2

3
2

0 . . . . . . . . . 0 0 0

2
6666666666666666664

3
7777777777777777775

u1ðTÞ
u2ðTÞ

..

.

..

.

..

.

un�1ðTÞ
unðTÞ

2
66666666666664

3
77777777777775

Figure 7.
Numerical solution of the

model Equation (16)
obtained using the
method of lines for

n ¼ 250 and �T ¼ 0.01
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sin
u1ðTÞ

2

� �

sin
u2ðTÞ

2

� �
..
.

..

.

..

.

sin
un�1ðTÞ

2

� �

sin
unðTÞ

2

� �

2
66666666666666666664

3
77777777777777777775

�B

sinu1ðTÞ
sinu2ðTÞ

..

.

..

.

..

.

sinun�1ðTÞ
sinunðTÞ

2
666666666664

3
777777777775
þC

cos
u1ðTÞ

2

� �

cos
u2ðTÞ

2

� �
..
.

..

.

..

.

cos
un�1ðTÞ

2

� �

cos
unðTÞ

2

� �

2
66666666666666666664

3
77777777777777777775

�

8bcos
u1ðTÞ

2

� �
0
..
.

..

.

..

.

0

8bcos
unðTÞ

2

� �

2
66666666666666664

3
77777777777777775

;

where:

� ¼ 1

h2
; A ¼ 4a; B ¼ 4; C ¼ 8b: ð27Þ

The nonlinear system of ordinary differential Equation (27) is solved using ode15s in
MATLAB. We plot the results in Figure 8. We note from Figure 8 that the steady state
solution is reached without oscillations at the boundaries. These results compare well
to those obtained by Ried et al. (2000) in which electrically driven hybrid instabilities in
SmC liquid crystal films are described.

3.4 Fourier method
The Fourier method reduces to a similar system as for the sinc method. The Fourier
differentiation matrix for the spatial derivative in Equation (16) is given in Weideman
and Reddy (2000). We obtain the system for N even:

Figure 8.
Numerical solution of the
model Equation (16)
obtained using the sinc
method for n ¼ 250 and
�T ¼ 0.01
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u01T

u02ðTÞ

..

.

..

.

..

.

u0n�1ðTÞ
u0nðTÞ

2
66666666666664

3
77777777777775
¼

0 0 0 . . . . . . . . . 0
1

2
csc2 h

2

� �
� �2

3h2
� 1

6

1

2
csc2 h

2

� �
. . . . . . . . .

�1

2
csc2ðhÞ 1

2
csc2 h

2

� �
� �2

3h2
� 1

6

1

2
csc2 h

2

� �
. . . . . . . . .

..

. . .
. . .

. ..
.

..

. . .
. . .

. . .
. ..

.

. . . . . . . . . . . . . . . � �2

3h2
� 1

6

1

2
csc2 �h

2

� �
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;

for N odd. We once again use ode15s in MATLAB to solve the resulting system. The
results are plotted in Figure 9. As in the case of the sinc method, the steady state
solution is smooth with out oscillations at the boundary.

4. Concluding remarks
In this paper, we have shown that a finite difference approximation to the model
Equation (16) produces results with high oscillations at the boundaries. The method of
lines approach reduces the oscillations at the boundaries. The steady solution is
however not very smooth. The sinc and Fourier methods both obtain smooth steady
solutions. A summary of the time taken for each of the programs to run is shown in
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Table I. The Fourier method is the most efficient in terms of the time taken for the

program to reach tfinal. This is because of the trigonometric terms which occur in the

model Equation (16).
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Stewart, I.W. (1998), ‘‘Painlevè analysis for a semi-linear parabolic equation arising in smectic
liquid crystals’’, Journal of Applied Mathematics, Vol. 61, pp. 47-60.

Stewart, I.W. (2004), The Static and Dynamic Continuum Theory of Liquid Crystals, Taylor and
Francis, London and New York, NY.

Stewart, I.W. (2007), ‘‘The alignment of smectic-A liquid crystals with director tilt
on the boundaries’’, Journal of Physics A: Mathematical Theoretical, Vol. 40,
pp. 5297-318.

Stewart, I.W. and Momoniat, E. (2004), ‘‘Traveling waves in ferroelectric smectic-C liquid
crystals’’, Physical Reveiw E, Vol. 69, p. 061714.

Stewart, I.W., Carlsson, T. and Leslie, F.M. (1994), ‘‘Chaotic instabilities in smectic-C liquid
crystals’’, Physical Review E, Vol. 49, pp. 2130-40.

PLC (n.d.), ‘‘Introduction to liquid crystals’’, PLC, Case Western Reserve University,
Cleveland, OH, available at: http://plc.cwru.edu/tutorial/enhanced/files/lc/Intro.html
(accessed April 2007).

Trefethen, L.N. (2000), Spectral Methods in MATLAB, SIAM, Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Weideman, J.A.C. and Reddy, S.C. (2000), A MATLAB Differentiation Matrix Suite, ACM,
New York, NY.

Yousuf, M. (2008), ‘‘On the class of high order time stepping schemes based on padè
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